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The Invariance Principle

What do five fingers and five sheep have in common? Let’s say we line-up the sheep
from left to right in some order. If we begin with an outstretched hand, fist unclenched,
and then proceed to pull-in the fingers one-by-one, in order from left to right, one finger
for every sheep, we end up with a clenched fist precisely as we run out of sheep. We
have just counted the sheep, and found that there are as many of them as there are
fingers on one of our hands. Indeed, if we repeat this process with a di↵erent ordering
of the sheep from left to right, we end up with the same result. It doesn’t matter how
we count them - we always find that there are as many sheep as there are fingers on one
hand. Their number remains the same. We say that the number of sheep is invariant
under the operation of counting.

Here’s another example. Can you find an interesting property shared by a cube and
the solid shown below?

Suppose we begin with the cube. Let’s count the number of vertices, the number
of edges, and the number of faces. There are 8 vertices, 12 edges, and 6 faces. We’ll
call these numbers V, E and F. Next, let’s compute the number � := V � E + F. This
number is called the Euler characteristic of the solid. For our cube, we find that � = 2.
Now, slice-o↵ one of the cube’s eight vertices in such a manner that the plane of the
slice bisects each of the three edges meeting at that vertex.
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This creates a new triangular face in place of the vertex. (Triangle ABC in the
picture above.) Note that the slicing operation gets rid of the original vertex, but
introduces a brand new face, which itself has 3 edges and 3 vertices.

So the first time we slice-o↵ a vertex of the cube, we increase F by 1, E by 3 and
V by 2. But this means that there is no net change in � at all. Let’s continue with
our slicing operation and excise a second vertex. If we were to slice-o↵ one of the four
vertices that were not connected to the first vertex by an edge, we’d see that the same
thing happens – � remains unchanged. To make things a little more interesting, we’ll
instead slice-o↵ one of the three vertices that was connected to the first vertex by an
edge. This time, we again increase F by 1, but we only increase E and V by 2 each.
This is because the newly created triangular face, in addition to introducing three edges
of its own, now also eliminates one of the previous edges – the one that connected the
two original vertices of the cube. And, it also shares one of its vertices with a vertex of
the previous triangular face. Nevertheless, it’s again clear that � remains unchanged.

We leave it to you to convince yourself that no matter what order we choose to slice-
o↵ all eight vertices in, the Euler characteristic remains unchanged after each slicing
operation. Indeed, it’s easy to see that when we are done slicing-o↵ all eight vertices in
the prescribed manner, we end up with precisely the solid shown in the first picture.

And this solid has 12 vertices, 24 edges, and 14 faces. So its Euler characteristic
is – still 2! In other words, the Euler characteristic is invariant under the operation of
slicing-o↵ vertices.

In general, given a dynamical system f : X ! X, any properties that are unchanged
along orbits are called invariants of the system. Knowing these invariants helps us
distinguish orbits. If two points have di↵erent values of a particular invariant, they
must be on di↵erent orbits. In other words, we cannot get from one to the other by
applying the operation f. We will call this the invariance principle.

More concretely, let’s say we are studying a universe of objects in which two objects
are regarded as essentially the same if one can be converted into the other by performing
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a specified reversible operation. Because two objects in this universe that look di↵erent
may nevertheless turn out to be essentially the same, the only way to be sure that they
really are di↵erent is to find an invariant of the system which takes di↵erent values for
those two objects.

The quest for suitable invariants for di↵erent kinds of dynamical systems is ubiqui-
tous in mathematics. The following questions will give you a taste of what this quest
feels like.

1. Shown below is an 8⇥ 8 grid of squares with a pair of diagonally opposite corners
surgically removed.

You are given 31 dominoes, each 2 squares long and 1 square wide.

Can you cover this post-surgery grid by placing the dominos on it, so that each
domino is positioned either horizontally or vertically, and exactly covers 2 squares
on the underlying grid?

Hint:
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How about now?

Solution: A grid of squares is pretty special amongst polygonal tilings of the
plane - no three tiles are such that any two among them share an edge. This
means that we can color the tiles using just two colors and have no two adjacent
tiles share the same color. Consider the chessboard pattern shown in the hint. If
we were to place a domino on the grid as prescribed, clearly it would cover exactly
one square of each color. In other words, the di↵erence between the number of
black and white squares is invariant under the act of placing dominos on the grid.
Since covering the board exactly and fully would bring that di↵erence down from
two to zero, it cannot be accomplished by placing dominos as prescribed.

2. Imagine overlaying a regular pattern of squares on the first quadrant of the Carte-
sian plane, so that we get a grid that stretches infinitely in the upward and right-
ward directions, and has precisely one corner – the bottom-left one. Now place
three coins on the grid – one in each of the three squares near the corner – as
shown below.

We’ll play a game. You are the only player, and there is just one legal move - if a
square occupied by a coin has an empty square right above it as well as an empty
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square beside it on the right, you can remove the coin in that square and replace
it with two coins, one in each of the two empty adjacent squares mentioned above.

The goal is to help all three initial coins escape from the squares they were im-
prisoned in. In other words, you want to execute a finite sequence of moves at the
end of which the three squares near the corner are empty. Can you do it?

Hint:

How about now?

Solution: Again, the hint tells us how to construct an invariant for this system.
Define the total weight of the system as the number obtained by adding up all
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